
Running FrAid

NOTICE: ""

Table of contents

1 Introduction..2

2 From the command line... 2

2.1 Start a FrAid session..2

2.2 Input from file..2

2.3 Input directly from the command line... 3

2.4 Using pipes.. 3

2.5 Shebang... 3

3 FrAid's command line.. 3

3.1 Synopsis...4

3.2 Options.. 4

4 Examples..7

4.1 Example 1..7

4.2 Example 2..8

""

Copyright © 2003-2006 Ivaylo Iliev All rights reserved.

1. Introduction

When used as a standalone system, FrAid can process input and generate output from/to
variety of sources/destinations. The interpreter works with standard Java streams so the
sources or destinations may be disk files, pipes, user input from a console, strings passed
from a Java application or even sockets, and this could be done in any combination or
sequence (redirect the streams at runtime, read from file, print to the console or vice versa,
etc.). Here are some examples (the input/output shown is from a Unix system but pretty
much the same applies to Windows; the '$' symbol is the particular system's prompt):

2. From the command line

2.1. Start a FrAid session

Start a FrAid session using the system's console for IO (introductory info is printed, FrAid's
prompt appears and processing of user's 2+2; is shown):

$ java -cp fraid.jar org.fraid.interpreter.Fraid
FrAid version 1.0, Copyright (C) 2003 Ivaylo I. Iliev
FrAid comes with ABSOLUTELY NO WARRANTY;
for details see the GNU General Public License.
This is free software, and you are welcome to

redistribute it under the conditions of the license.
fraid:1>2+2; //user input
(4.0 + 0.0i) //system's output
fraid:2>exit; //next user command
$

2.2. Input from file

Take input from a file named myFraidProgram which in this oversimplified example
contains a single line:

2+2;

and exit after processing:

$ java -cp fraid.jar org.fraid.interpreter.Fraid -quiet
-in myFraidProgram

(4.0 + 0.0i)
$

Running FrAid

""
Page 2

Copyright © 2003-2006 Ivaylo Iliev All rights reserved.

2.3. Input directly from the command line

Take input directly from the command line:

$ java -cp fraid.jar org.fraid.interpreter.Fraid -in
"2+2;" -quiet

(4.0 + 0.0i)
$

2.4. Using pipes

Use pipe to redirect input (note the extra prompt which appears):

$ echo "2+2;" | java -cp fraid.jar
org.fraid.interpreter.Fraid -quiet

fraid:1>(4.0 + 0.0i)
$

2.5. Shebang

In Unix's shebang style, here we have a file named shebang.frd which contains:

//bin/true && exec /my/java/location/java -cp
/my/fraid/location/fraid.jar org.fraid.interpreter.Fraid -quiet -in
/my/shebang/location/shebang.frd

2+2;

It can be excuted either like this:

$ java -cp fraid.jar org.fraid.interpreter.Fraid -quiet
-in shebang.frd

(4.0 + 0.0i)
$

or like this (after making shebang.frd executable):

$./shebang.frd
(4.0 + 0.0i)
$

which allows the file to be executed from anywhere in the system.

3. FrAid's command line

Running FrAid

""
Page 3

Copyright © 2003-2006 Ivaylo Iliev All rights reserved.

3.1. Synopsis

java -cp fraid.jar org.fraid.interpreter.Fraid
[-in system | fraid | line | box | FILENAME |

STRING;]
[-out system | fraid | dialog | null | FILENAME]
[-err system | fraid | dialog | null | FILENAME]
[-info system | fraid | dialog | null | FILENAME]
[-logfile dialog | null | FILENAME]
(-log in | out | err | info)*
(-syms CLASSNAME)*
(-symsa CLASSNAME)*
(-load FILENAME)*
[-debug]
[-quiet]

Note:
Depending on the operating system, java -cp fraid.jar org.fraid.interpreter.Fraid is usually wrapped
in fraid.sh or fraid.bat but you can pass the above commandline arguments as well.

3.2. Options

3.2.1. -in

-in - controls the input source

system - takes input from System.in , this is the default; will exit when the exit()
function is called or ^C is pressed;

fraid - uses FraidConsole for input, automatically redirects the output there as well;
will exit when the exit() function is called or the console is closed;

line - opens a simple dialog with a single-line text area (has command history (Up, Down
keys) and parenthesis matching); will exit when the exit() function is called;

box - opens a simple dialog with a multi-line text area (has command history (Alt-Up,
Alt-Down keys) and parenthesis matching); will exit when the exit() function is called;

STRING - if a string that contains the ';' character is passed it is treated as a FrAid script: it
gets executed, prints a result and the system exits; will exit when the whole script is
processed and all GraphicsPanels are closed, or before that if the script contains a call to the
exit() function;

Running FrAid

""
Page 4

Copyright © 2003-2006 Ivaylo Iliev All rights reserved.

FILENAME - takes input from the specified file; will exit when the end of the file is
reached, or before that if the script contains a call to the exit() function;

3.2.2. -out

-out - controls the output stream

system - prints on System.out , this is the default;

fraid - uses FraidConsole for output, automatically redirects the input there as well;

dialog - opens a simple dialog with a text area;

null - discards the output;

FILENAME - saves the output to the specified file;

3.2.3. -err

-err - controls the error stream

system - prints on System.out , this is the default;

fraid - uses FraidConsole for output, automatically redirects the input there as well;

dialog - opens a simple dialog with a text area; if you close the dialog it will reappear
with the next error;

null - discards the output;

FILENAME - saves the output to the specified file;

3.2.4. -info

system - prints on System.out , this is the default;

fraid - uses the bottom TextArea of FraidConsole for output; if the FraidConsole is not
used opens a dialog;

dialog - opens a simple dialog with a text area;

null - discards the output;

FILENAME - saves the output to the specified file;

3.2.5. -log

Running FrAid

""
Page 5

Copyright © 2003-2006 Ivaylo Iliev All rights reserved.

-log - an item in a list of the streams being logged

in - the input is logged;

out - the output is logged; logged by default;

err - the error stream is logged; logged by default;

info - the info stream is logged;

3.2.6. -logfile

-logfile - controls the logging destination; the default destination is the file
Fraid/fraid.log ;

dialog - opens a simple dialog with a text area;

null - doesn't log anything even if there are streams are attached to it;

FILENAME - logs to the specified file (in the Fraid directory);

3.2.7. -syms
-syms absolute_path/file_name

A name of an XML file containing a serialized instance of something implementing the
StaticSymbolsInterface . The default location is
org/fraid/symbtable/static_symbols within the jar. With this option this
default location will be ignored, so you can select the precise functions that you want loaded.

3.2.8. -symsa
-symsa /file_name

Same as -syms but the default symbols will be loaded.

3.2.9. -load
-load FILENAME

Loads an item from a list of FrAid scripts to be loaded before any user input is processed.
Convenient for loading function definitions before using them.

3.2.10. -debug

Turns debugging on (you can turn it off later with the debug() function). When debugging
is on, the complete stack trace of the exception is printed;

Running FrAid

""
Page 6

Copyright © 2003-2006 Ivaylo Iliev All rights reserved.

3.2.11. -quiet

Prevents the printing of the introductory info.

4. Examples

4.1. Example 1

Loading definitions from a file and calling a custom function (based on those definitions).
Say we have a file named lorenz.frd :

clear;
a=10;b=28;c=8/3;
controlVar(a,1,b,1,c,1);

lor1(x1, x2, x3, t) = a * (x2 - x1);
lor2(x1, x2, x3, t) = b*x1 - x2 - x1*x3;
lor3(x1, x2, x3, t) = x1*x2 - c*x3;

x=0; y=1; z=0;
controlVar(x,.1,y,.1,z,.1);

startP=0; endP=100; numberSamples=10000;

rk1(lor1,//the system
lor2,
lor3,
x, y, z, //the initial condition
startP, //the start point
endP, //the end point
numberSamples, /*number of samples*/
"_rk");

If we run:

$ java -cp fraid.jar org.fraid.interpreter.Fraid -quiet
-load lorenz.frd -in "plot2(_rk_0,_rk_2,0,100);" -out null -info null &

$

we get:

Note that FrAid is invisible, only a window with our plot opens (now you can save the
picture to file or do whatever you want). The process is run in the background so even the
system's prompt appears immediately. Here I've used the picture from the zooming example,
but the result is pretty much the same.

Running FrAid

""
Page 7

Copyright © 2003-2006 Ivaylo Iliev All rights reserved.

With the command above we are telling FrAid the following (the order is unimportant):

• do not print the intro,
• load the file lorenz.frd ,
• execute plot2(_rk_0,_rk_2,0,100) ,
• ignore output and info streams.

4.2. Example 2

Of course, we can do the same with a function like lorenz1.frd (the only difference is
the last line):

clear;
a=10;b=28;c=8/3;
controlVar(a,1,b,1,c,1);

lor1(x1, x2, x3, t) = a * (x2 - x1);
lor2(x1, x2, x3, t) = b*x1 - x2 - x1*x3;
lor3(x1, x2, x3, t) = x1*x2 - c*x3;

x=0; y=1; z=0;
controlVar(x,.1,y,.1,z,.1);

startP=0; endP=100; numberSamples=10000;

rk1(lor1,//the system
lor2,
lor3,
x, y, z, //the initial condition
startP, //the start point
endP, //the end point
numberSamples, /*number of samples*/
"_rk");

plot2(_rk_0,_rk_1,0,100);

and then call:

$ java -cp fraid.jar org.fraid.interpreter.Fraid -quiet
-in lorenz1.frd -out null -info null &

However, the point of Example 1 was to illustrate that one can load some definitions and use
them later. What we asked it to do with those definitions could have been completely
different.

""

Running FrAid

""
Page 8

Copyright © 2003-2006 Ivaylo Iliev All rights reserved.

	1 Introduction
	2 From the command line
	2.1 Start a FrAid session
	2.2 Input from file
	2.3 Input directly from the command line
	2.4 Using pipes
	2.5 Shebang

	3 FrAid's command line
	3.1 Synopsis
	3.2 Options
	3.2.1 -in
	3.2.2 -out
	3.2.3 -err
	3.2.4 -info
	3.2.5 -log
	3.2.6 -logfile
	3.2.7 -syms
	3.2.8 -symsa
	3.2.9 -load
	3.2.10 -debug
	3.2.11 -quiet

	4 Examples
	4.1 Example 1
	4.2 Example 2

