Type checking in FrAid

NOTICE: ""

Table of contents

1 FrAId iISWEAKIY tYPEA.......eeieeeeee ettt re e
2 CNECKEO TYPIBS... .ttt ettt bbbttt e e bbbt nr e enes
3 FUNCEION TYPES..... ettt e bbbt bbb e e e e e e e e e nbenneenenne s
3.1 DEfINEA FUNCHIONS......couiiiiiieiceie ettt sttt sre et nneens
3.2 Library FUNCLIONS.........ccueeiece ettt ns
3.3 Library Functions with variable number of arguments...........ccccccovveveiievieccesceesees
3.4 SAMPIEA FUNCLIONS.......ccueeiiieieceesie ettt e e ae e s e sreenesneesseenseeneennes
3.5 GENEIALOr FUNCLIONS........ccieiiesieeieeiesiee e eeesee e eee e ee e esne e seeneesseesseeneesneenseeneenneenes
3.6 Functions generated by Meta EXPreSSIONS.........ccooiririerenenesieee e

Type checking in FrAid

The main focus of FrAid is manipulation of mathematical functions. As such its purpose is served if everything could be just a
complex number or evaluates to a complex number. In reality though, as a programming language it needs a certain number of
utility functions and constructs which somewhat "polutes" the otherwise clean semantics. The following section treats this
subject by introducing type and function implementation distinction (which do not exist in the "pure" language of
mathematics). Again, argument types and function implementation details have no meaning in the context of defining
mathematical functionsin FrAid and only apply where human interaction (graphics, error handling, etc.) or Input/Output
operations are involved.

1. FrAid isweakly typed

FrAid iswesakly typed - there is no restriction what values could be assigned to variables or
returned by functions and everything evalues to a Complex but just like other weakly typed
languages the functions could place restrictions on what their arguments are.

Examples:

2. Checked types

In FrAid you can use these functions to check what is behind a returned/passed value (by a
Function or aVariable):

In your Java code for the same purpose you you can use:

Page 2

Type checking in FrAid

Conpl ex);
org. frai d. conpl ex. Conpl exHel per. ensur eDef i nedFuncti on(
Conpl ex);

} Y ou need these only if you are using FrAid from Java ‘

The following is-a hierarchy shows how the FrAid "types’ relate to each other (the same
names are used in the rest of the documentation). The asterisk denotes checked type. If atype
is checked a value of a parent's type could be passed as an argument but only those of the
appropriate type will be accepted:

« Complex - everything evaluates to a Complex, if not Complex* would generally evaluate
to 0+0i;
» Complex* - checked Complex, accepts only complex numbers (3+4i) or a Function
which evaluates to a complex number;
* Boolean - achecked Complex could be a Boolean;

» String - something is considered a String if SimpleNode.m_text !'= null;
» String* - checked String, accepts only strings ("hello™) or a Function which
evaluates to a string;

* Function* - asingle quote character followed by afunction signature ('sin(x)), the
names of the arguments are insignifficant, the number isimportant;
* Variable* - afunction with no arguments (Pi(); or Pi;), the brackets can be
ommited;
» UserDefinedVariable* - a no arguments UserDefinedFunction;

» UserDefinedFunction* - afunction defined by the user (vs. the Java defined
functions) - f(X,y)=x*sin(y)+1;
» UserDefinedVariable* - a no arguments UserDefinedFunction (a=5;) ;

» Boolean - aComplex could be interpreted as a true/false value. 0+0i isfalse,
everything elseistrue.

3. Function types

A function is uniquely identified by its name and the number of its arguments. For FrAid the
type of the argumentsisinsignifficant and if there are any restrictions placed upon them by
the function itself FrAid remains unaware.

Example:

Page 3

Type checking in FrAid

3.1. Defined Functions

The user defined FrAid functions can be overriden at any moment of the FrAid execution.
Example:

The user defined FrAid functions can only have fixed number of arguments.

The user defined FrAid functions can only return Complex, String and Boolean (see Checked
Types).

3.2. Library Functions

The Library Functions can not be overriden by user defined functions

The Library Functions can take:

« Fixed number of arguments - add(x, y)
Variable number of arguments- sum(x, y, z) vs.sum(Xx) .

The Library functions can return Complex, String and Boolean (see Checked Types).
Although not enforsed in the grammar the preffered way for alibrary function to
return/define a function is to take a String argument for the function name and register the
function (still returning Complex, String or Boolean). The rest of the code then can use the
newly registered function addressing it by name. For examples see rk(), rk1() and fourier().

3.3. Library Functionswith variable number of arguments

Type checking in FrAid

A Library Function with variable number of arguments can coexist with any other function
witht the same name but fixed number of arguments.

A Library Function with variable number of args. can place restriction on the number of its
arguments. sanpl edF() for instance won't work unless an odd, greater than seven number
of argumentsis passed (the first of which isa String, see type checks and examples).

If two functions with the same name exist, one with fixed number the other with variable
number of args. and acall is made for afunction with this name and the number of args of
the fixed number function, the fixed number function takes precedence.

It isvery easy to implement your own Libraray Functions, just implement the ComplexFunction interface and placeitin a
place where the symbol table can find it. Using this technique FrAid can be made to do completely different things, even the
standard operators' +, -, *, ... behaviour could be changed (well, you need to know what you are doing here, but the point is
that it is quite flexible). FrAid comes with a simple code generator which can generate library functions and plugins - see the
Library Function Generator and the Plugin Generator

3.4. Sampled Functions

A Sampled Function is the equivalent of aVector of a certain length in other languages with
the difference that in FrAid they have a start point attached to the first element and a (fixed!)
step between its elements:

v(x)=sanmples(1,1,2,2,2); //create a sanpled function
whi ch starts at 1,
//has a step=1 and three
el ements equal to 2;
v(x)=vector(2,2,2); // equi val ent to the one above

Thisway the sampled functions can be used anywhere non-sampled functions can be used:

pl ot ({v+sin}); //add a sanpl ed and
non- sanpl ed function

Once created the start point and step of a Sampled Function can be checked (from the
example above):

start S(v);

[l -->1
stepS(v); [/ -->1

or changed:

startS(v, .5);

Page 5

../fraid/ext_lib_fun.html
../fraid/ext_lib_fun.html
../fraid/ext_plugins.html

Type checking in FrAid

stepS(v, . 3);
startS(v); [/ -->
stepS(v); [/ >

w ol

The length of a Sampled Function could be checked with| engt hS(v); // --> 3 but
can not be changed without redefining the whole function.

The individual elements can be checked or changed using the elemS() function.
Sampled Functions can be concatenated, truncated, padded, shift-rotated, etc.

Asyou may have noticed many functions which deal with Sampled Functions have the'S
postfix in their names (printS, stepS, starts, ...)

Every non-sampled function could be sampled:

f (x) =si n(x)+cos(Xx); /I non-sanpl ed function
fs(x)=sanpl eL(f, 0, 1, 1000); [/fs(x) is the sanpl ed
equi valent of f(x) in the interval [0, 1]

Like everything else FrAid keeps track of the changes in Sampled Functions and the functions they depend on. For the
example above see what happens (pl ot (f s) ;) when you change the definition of f: f (x) =si n(x) -cos(x); - fs(x)
will be resanpl ed!

The main purpose of the Sampled Functionsisto alow DSP and processing of sampled data
(like signals from the sound card). For consistency with the non-sampled functions outside of
the interval where the samples are defined the function evaluates to zero.

} In versions prior to 1.5 the concept of Sampled Functions existed but only through the sampledF() function (now deprecated). ‘

3.5. Generator Functions

Generator Functions can be used in two contexts;

« Function definitions: f s(x) =sanpl eL(f, 0, 1, 1000);

« Where afunction is expected as an argument: pl ot (sanpl eL(f, 0, 2*Pi,
1000)) ; inwhich case a hidden function isregistered (in this respect they are very
similar to the meta expressions)

The Generator functions can create both sampled or non-sampled functions. For example
sanpl eL(), truncat eS create Sampled Functionswhilefir Resp(), icft()
create regular "analog" functions.

Page 6

../fraid/lib_functions.html

Type checking in FrAid

3.6. Functions generated by M eta Expressions

The FrAid meta expressions ({ xxx}) generate hidden functions which are passed where a
function is expected as an argument: pl ot ({ si n+cos}) ; . Asaready noted, the meta
expressions are just a short hand and everything in FrAid could be done without their use.

Both the meta expressions and Generator Functions (when used outside of function definitions) create hidden functions which
have names prefixed by "_hiddenF". They can be accesed by name just like any other FrAid function.

Page 7

	1 FrAid is weakly typed
	2 Checked types
	3 Function types
	3.1 Defined Functions
	3.2 Library Functions
	3.3 Library Functions with variable number of arguments
	3.4 Sampled Functions
	3.5 Generator Functions
	3.6 Functions generated by Meta Expressions

